

«Институт физико-технических проблем»

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

РАЗРАБОТКА И ИССЛЕДОВАНИЕ КОПЛАНАРНЫХ CdZnTe ДЕТЕКТОРОВ ДЛЯ СПЕКТРОМЕТРИИ ГАММА-ИЗЛУЧЕНИЯ

Газизов И.М., Силаев Е.А., Смирнов А.А.

ППСР-2019, г.Казань

Сравнение детекторов гамма-излучения (Современное состояние)

Вид детектора	CdZnTe	Ge	LaBr ₃ (Ce)	SrI ₂
Эффективный атомный номер Z	50	32	46	49
Плотность, г/см ³	5,78	5,33	5,08	4,6
Энергетическое разрешение, 662 кэВ, %	0,8	0,2	2,3	3,0
Относит. эффективность,%	0,1-10	5-200	5-100	5-100
Максимальный объем, см ³	10	500	300	300
Особенность	RT	LN ₂	Фон ~0,2 Бк/см ³	Фон ~0,05 Бк/см ³

Электрофизические параметры полупроводниковых

материалов

для детекторов ионизирующего излучения

	\bigwedge					
Материал	CdZnTe	CdTe	GaAs	Si	HgI	a-Se
Средний атомный номер	49,1	50	32	14	80,5	34
Плотность, г/см ³	5,78	5,85	5,32	2,33	6,6	4,3
Ширина запрещенной зоны, eV	1,57	.,5	1,43	1,12	2,13	2,2
Энергия образования пары, eV	4,64	4,43	4,2	3,62	4,2	47
Удельное сопротивление, Омсм	$5 \cdot 10^{10}$	109	107	104	1013	1012
Транспортные характеристики,						
см²/В	10-2	3.10-3	8.10-5	>1	10-4	5·10 ⁻⁹
электроны (µт) _е дырки (µт) _h	10-5	2.10-4	4.10-6	>1	4.10-5	10-7

POCATOM

Недостаток:

-Плохой сбор дырок $(\mu \tau)_h$ ~10⁻⁵ см²/В

Решение проблемы: использование различных конструкций детектора с преимущественно электронным сбором заряда на основе:

- а) Квазиполусферического детектора
- б) Копланарного детектора
- в) Детектора с сеткой Фриша
- г) Пиксельного детектора

Состояние в АО «ИФТП» приборной тематики, связанной с CdZnTe и CdTe детекторами

Проведенные разработки:

- Малогабаритный спектрометр гамма-излучения СЕГ-ТК-1К
- Зондовые БД гамма-излучения
- Охлаждаемый БД с термоэлектрическим охлаждением для спектрометрии рентгеновского излучения
- Лабораторный макет БД гамма-излучения на основе копланарных детекторов
- 16- и 64-пиксельные детекторы 6х6х5 мм³ и 10х10х5мм³
 Многоканальный спектрометрический стенд

СПЕКТРОМЕТР ЭНЕРГИЙ ГАММА-ИЗЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫЙ СЕГ-ТК-1К

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

• Диапазон энергий - от 40 до 2000 кэВ.

•Энергетическое разрешение (ПШПВ):

- по линии 662 кэВ (Cs-137) 17-20 кэВ
- по линии 59,5 кэВ (Am-241) 6 кэВ
- по линии 356 кэВ (Ba-133) 14кэВ

•Квазиполусферический CdZnTe детектор 10х10х5 мм³.
•Питание +6 В. Ток потребления не более 100 мА.
•Время установления рабочего режима не более 30 сек.
•Рабочий диапазон температур от минус 40 до +50 °C.
•Габаритный размер 135×45×45, мм
•Масса 0,32 кг

ПРИБОРЫ НА ОСНОВЕ CdZnTe ПИКСЕЛЬНЫХ ДЕТЕКТОРОВ

- Разработаны CdZnTe пиксельные детекторы (2016г.)
- Прказана возможность создания радиодиагностической аппаратуры на основе CdZnTe детекторов (2018г.)

спектры Ва-133

16-пиксельный CdZnTe детектор 6х6х5мм

Основные применения:

- Радионуклидная диагностика в ядерной медицине ОФЭКТ, сцинтиграфия.
- Промышленная цифровая радиография.
- Приборы визуализации источников гамма-излучения

ОБЩИЙ ВИД КОПЛАНАРНОГО CdZnTe ДЕТЕКТОРА

• Расчет электростатического потенциала (программа FEMM 4.2)

- **Δ**Q_{ind} =Q*ΔV_W индуцированный заряд на электроде в результате перемещения заряда
- Влияние дырок практически нивелируется при сборе заряда

ФУНКЦИОНАЛЬНАЯ СХЕМА КОПЛАНАРНОГО CdZnTe ДЕТЕКТОРА

• Функциональная схема копланарного CdZnTe детектора

Uвых = Ucc - $G \cdot U$ нсс

СС-собирающая сетка ; НСС – несобирающая сетка G- коэффициент усиления

• Форма выходных сигналов:

с выхода УФ "Ortec" 570
 с выхода ПУ (несобирающая сетка);
 с выхода ПУ (собирающая сетка);

4- с выхода БД гамма-излучения.

Моделирование весовых функций копланарных детекторов

Весовые потенциалы анодов А1 и А2 на глубине 0,7 мм от поверхности анодов. Охрана плавающая.

Копланарный детектор КПД№З 0,6 0,6 0,5 0,4 0,3 0,2 0,1 0 2 4 х.mm 6 8 10

Распределение весового потенциала анодов A1 и A2 на глубине 0,7 мм от поверхности анодов

Сравнение показателей КПД №2 и КПД №3

Показатели различия весовых потенциалов анодов А1 и А2:

$$\Delta \varphi_{\rm max} = \left| \varphi_{A1} - \varphi_{A2} \right|$$

$$\Delta \Phi = \sum_{i} \Delta \varphi_{i}$$

Тип детектора	$\Delta arphi_{ m max}$	$\Delta \Phi$
КПД№2	0,097	12,65
КПД№3	0,153	9,91

POCATOM

Функциональные зависимости копланарных CdZnTe детекторов

Зависимость энергетического разрешения линии 662 кэВ от коэффициента усиления G

Зависимость коэффициента формы К_ф линии 662 кэВ от коэффициента усиления G

- Вывод: Для данного КПД оптимальный коэффициент усиления G=0,93
- Коэффициент формы правой части пика
 К_Ф ^{пр} = ПШДВ^{пр} / ПШПВ^{пр}

Зависимости ПШПВ копланарных CdZnTe детекторов от напряжения

Зависимость ПШПВ линии 662 кэВ от высоковольтного напряжения

Зависимость ПШПВ линии 662 кэВ от межсеточного напряжения

• Вывод: Существует оптимальные величины высоковольтного напряжения на катоде и межсеточного напряжения

Амплитудные спектры копланарных CdZnTe детекторов

Спектр амплитудного распределения импульсов гаммаизлучения радионуклидов ¹³⁷Cs. КПД 10х10х10мм. Напряжение U= 1000 В

Спектр источника гамма-излучения ⁶⁰Со, измеренный на КПД №2, напряжение U= 800 В

POCATOM

Сравнение спектров копланарных CdZnTe детекторов КД№2 и КД№3

Рис. Спектр амплитудного распределения импульсов гамма-излучения радионуклида ¹³⁷Сs. КПД №2, Напряжение U=800 В

Интегральная нелинейность КПД 10х10х10мм

- КПД 10x10x10 мм³ U=1000B U_c = 70B т=1мкс
- 14 гамма-линий в диапазоне 60-2600кэВ: Am-241, Ba-133, Eu-152, Co-57, Cs-137,Co-60, Th-228

Интегральная нелинейность КПД 10х10х5мм

- КПД 10х10х5 мм ³ U=800 B U_c = 50B т=1мкс
- 12 гамма-линий в диапазоне 60-1330 кэВ: Ат-241, Ва-133, Еu-152, Со-57, Сs-137,Со-60

Зависимость энергетического разрешения от энергии гамма-излучения

Компоненты энергетического разрешения: 40 $\Delta E^2 = \Delta E_{Noise}^2 + \Delta E_{St}^2 + \Delta E_C^2$ 35 $\Delta E_{st} = 2,355\sqrt{\varepsilon FE}$ 30 IIIIIIB, K3B 25 ΔE_{C} - Связана с флуктуациями 20 сбора заряда 15 $\Delta E_{C} = R_{\lambda} \lambda E$ $\overline{\lambda}$ 10-средние потери заряда 5

Аппроксимация зависимости энергетического разрешения

$$\Delta E = a + bE$$

$$\Delta E_C = R_\lambda \, \lambda E$$

Зависимость энергетического разрешения (ПШПВ) от энергии гамма-излучения

Эффективность регистрации копланарных CdZnTe детекторов

$$\varepsilon_{\rm \tiny GH} = \frac{N4\pi R^2}{A\gamma S}$$

•

где, S-площадь детектора, N-площадь фотопика [имп/с]; A –активность источника; γ – квантовый выход ; R- 80мм (расстояние до источника)

Эффективность регистрации копланарного CdZnTe детектора 10x10x10 мм

Относительная эффективность регистрации ППП (для Eu-152) в диапазоне 40-1500 кэВ

Эффективность регистрации для Th-228

POCATOM

Относительная эффективность CdZnTe КПД (относительно 3"x 3" Nal(Tl))

CdZnTe КПД 10x10x10 мм

• Расчет абсолютной эффективности при R=25см (по измерениям при R=8 см)

Нуклид	Энергия, кэВ	Эффективность
Eu-152	121,8	9,9·10 ⁻⁵
Th-228	238	6,7.10-5
Ba-133	356,01	2,7.10-5
Cs-137	661,6	8,7.10-6
Eu-152	1408	2,3.10-6
Th 228	2614 61	7 5 10-7
111-220	2014,01	7,5.10

• Расчет эффективности относительно сцинтилляционного детектора 3"х 3" NaI(Tl)

$$\varepsilon_{omh} = \frac{\varepsilon_{a\delta c} (\text{CdZnTe})}{\varepsilon_{a\delta c} (\text{NaI})}$$

$$\mathcal{E}_{_{OMH}}=0,2\%$$

Эффективность регистрации копланарного CdZnTe детектора 10x10x5 мм

Зависимость эффективности регистрации от энергии

$$\mathcal{E}_{_{GH}} = 3, 2 \cdot 10^5 E^{-1,82}$$

Относительная эффективность регистрации ППП (для Eu-152) в диапазоне 40-800 кэВ

Температурные зависимости КПД 10х10х10мм³

Температурные зависимости КПД 10х10х5мм ³

Положение пика 662 кэВ с температурой

Загрузочная способность копланарных CdZnTe детекторов

L см	Скорость счета S ₆₀ , x10 ⁴ ,с ⁻¹	ПШПВ (662 кэВ), кэВ
ОСГИ 2929	0,0095	12
ОСГИ 2930	0,11	12,79
123	2,35	13,5
89	4,10	14,2
74	5,41	14,7
65	6,78	15
55	8,84	15,7
45	11,58	18
35	15,72	20,9
25	23,79	33,1
20	22,40	32,4

24

Благодарю за внимание!

141980 г. Дубна Московской обл. ул. Курчатова 4, АО «ИФТП» тел.: /49621/ 70645 E-mail: <u>iftp@dubna.ru</u> www.iftp.ru